$\mathrm{Na}_{8} \mathrm{H}_{18}\left[\left\{\mathrm{Er}_{3} \mathrm{O}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right\}_{2} \mathrm{Al}_{2}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{5}\right] \cdot 40.5 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Er} 2-\mathrm{O} 3$	$2.35(2)$	Er5-O59	$2.44(2)$
$\mathrm{Er} 2-\mathrm{O} 45$	$2.41(2)$	Er5-O8	$2.46(2)$
$\mathrm{Er} 2-\mathrm{O} 4$	$2.43(2)$	Er6-O2	$2.21(3)$
$\mathrm{Er} 2-\mathrm{O} 44$	$2.43(3)$	Er6-O53	$2.25(2)$
$\mathrm{Er} 2-\mathrm{O} 40$	$2.45(2)$	Er6-O6	$2.34(2)$
$\mathrm{Er} 3-\mathrm{O} 16$	$2.24(3)$	Er6-O14	$2.37(2)$
$\mathrm{Er} 3-\mathrm{O} 1$	$2.27(2)$	Er6-O27	$2.40(3)$
$\mathrm{Er} 3-\mathrm{O} 4$	$2.33(2)$	Er6-O28	$2.42(3)$
$\mathrm{Er} 3-\mathrm{O} 11$	$2.37(2)$	Er6-O7	$2.45(2)$
$\mathrm{Er} 3-\mathrm{O} 4$	$2.38(3)$	Er6-O21	$2.47(1)$

During the refinement, $U_{\text {iso }}$ for Na 9 converged to a value which was too large ($0.27 \AA^{2}$), so the site occupancy was reduced to 0.5 . The resulting value of $U_{\text {iso }}, 0.12(1) \AA^{2}$, is reasonable for an Na^{+}cation. The site occupancies of the O138 and O149 atoms, both of which are from waters of crystallization, were fixed at 0.5 because of the short distance $(1.6 \AA)$ between them. Although the distance between Nb 22 and O 75 [1.68(4) \AA] is rather short for a terminal $\mathrm{Nb}-\mathrm{O}$ bond, the same $[1.68$ (4) \AA] and shorter $[1.62(2) \AA$ A $]$ distances have been reported for $\mathrm{Na}_{7} \mathrm{H}_{19}$ $\left[\left\{\mathrm{Eu}_{3} \mathrm{O}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right\}_{2} \mathrm{Al}_{2}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{5}\right] .47 \mathrm{H}_{2} \mathrm{O}$ (Ozeki, Yamase, Naruke \& Sasaki, 1994) and $\mathrm{AgLaNb}_{2} \mathrm{O}_{7}$ (Sato, Watanabe \& Uematsu, 1993), respectively. The maximum Fourier peak ($3.56 \mathrm{e}^{-3}$) is $2.20,2.20$ and $2.21 \AA$ from O110, O146 and O151, respectively, all of which are from waters of crystallization. These distances are too short for $\mathrm{Na} \cdots \mathrm{O}$ or $\mathrm{O} \cdots \mathrm{O}$ hydrogen-bond distances. Moreover, since $U_{\text {iso }}$ for Ol 10 and O146 converged to moderate values [0.12 (1) and 0.20 (2) \AA^{2}, respectively] with site occupancies of 1.0 , disorder among O110, O146 and the peak site is not likely to occur. Therefore, the maximum Fourier peak was not identified as an atom. The minimum Fourier peak ($-3.13 \mathrm{e}^{\AA} \AA^{-3}$) is a very short distance from $\mathrm{Nb} 28(0.39 \AA)$, suggesting that it is a ghost of the Nb atom. The high R value of 0.076 is probably due to the rather poor quality of the crystal, which is strongly efflorescent.

Program(s) used to solve structure: DIRDIF (Beurskens et al., 1992). Program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1989).

This work was supported in part by a Grant-in-Aid for Science Research on Priority Areas, 'New Development of Rare Earth Complexes', No. 06241104, from the Ministry of Education, Science, Sport, and Culture.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: OA1001). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Besecker, C. J., Day, V. W., Klemperer, W. G. \& Thompson, M. R. (1984). J. Am. Chem. Soc. 106, 4125-4136.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarcíaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen. The Netherlands.
Brown, I. D. \& Altermatt, D. (1985). Acta Cņst. B41, 244-247.
Flynn, C. M. Jr \& Stucky, G. D. (1969). Inorg. Chem. 8, 335-344.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Naruke, H., Ozeki, T. \& Yamase, T. (1991). Acta Cryst. C47, 489492.

Ozeki, T., Yamase, T., Naruke, H. \& Sasaki, Y. (1994). Inorg. Chem. 33, 409-410.
Sato, M., Watanabe, J. \& Uematsu, K. (1993). J. Solid State Chem. 107, 460-470.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Yamase, T., Naruke, H. \& Sasaki, Y. (1990). J. Chem. Soc. Dalton Trans. pp. 1687-1696.

Acta Cryst. (1996). C52, 2660-2662

The First Beryllium Periodate: $\mathbf{B e}\left(\mathbf{H}_{4} \mathrm{IO}_{6}\right)_{\mathbf{2}} \mathbf{4} \mathrm{H}_{\mathbf{2}} \mathrm{O}$

Zhibin Zhang, ${ }^{a}$ Heinz Dieter Lutz, ${ }^{a}$ Mitko Georgiev ${ }^{b}$ and Maria Maneva ${ }^{b}$
${ }^{a}$ Universität-GH Siegen, Anorganische Chemie I, D-57068 Siegen, Germany, and ${ }^{\text {b }}$ Universität für Chemische Technologie und Metallurgie, Lehrstuhl für Anorganische Chemie, Sofia, Bulgaria. E-mail: lut¿@chemie.uni-siegen. d400.de

(Received 29 January 1996; accepted 22 May 1996)

Abstract

The title compound, beryllium tetrahydrogenhexaoxoiodate(VII) tetrahydrate, is built up from slightly deformed $\mathrm{Be}\left(\mathrm{OH}_{2}\right)_{4}$ tetrahedra (a, b) and $\mathrm{IO}_{2}(\mathrm{OH})_{4}$ octahedra (A, B) with cis configuration of the oxo ligands. They are arranged along [001] forming layers with stacking $a B A b A B a B A b A B$. The $\left[\mathrm{H}_{4} \mathrm{IO}_{6}\right]^{-}$and $\mathrm{Be}\left(\mathrm{OH}_{2}\right)_{4}^{2+}$ ions are held together by a network of eight independent hydrogen bonds of different strength. Two of the H atoms of $\left[\mathrm{H}_{4} \mathrm{IO}_{6}\right]^{-}$are disordered over $\mathrm{O}-\mathrm{H} \leftrightarrow \mathrm{H}-\mathrm{O}$ split positions.

Comment

The title compound, which is very easily decomposed by exposure to X-rays, was first described as $\mathrm{Be}\left(\mathrm{IO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Biber, Neiman \& Bragina, 1941 ; Maneva, Georgiev \& Pavlova, 1988). This was indicated by IR experiments, but resulted from the strong reaction with KBr used as the matrix. Raman spectroscopic and more careful IR experiments, however, revealed that the compound under study was an orthoperiodate, $\mathrm{Be}\left(\mathrm{H}_{4} \mathrm{IO}_{6}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, rather than a metaperiodate (Maneva, Georgiev, Lange \& Lutz, 1991). This has been confirmed by the single-crystal X-ray studies reported in this work.

The crystal structure, which represents a hitherto unknown structure, is built up of layers of $\mathrm{Be}\left(\mathrm{OH}_{2}\right)_{4}$ tetrahedra (a, b) and double layers of $\mathrm{H}_{4} \mathrm{IO}_{6}$ octahedra
(A, B) parallel to (001) (see Fig. 1). They are held together by different strong hydrogen bonds formed by the two crystallographically different types of water molecule and the four different OH groups of the periodate ion with $\mathrm{O} \cdots \mathrm{O}$ distances as short as 2.513 (9) \AA. The hydrogen bonds drawn in Fig. 2, however, are

Fig. 1. Unit cell and packing of $\mathrm{Be}\left(\mathrm{H}_{4} \mathrm{IO}_{6}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. H atoms are omitted for clarity.

Fig. 2. An $\mathrm{H}_{4} \mathrm{IO}_{6}$ octahedron. Dashed lines represent hydrogen bonds donated from the IOH groups, dotted lines represent hydrogen bonds accepted by the O atoms and empty circles represent H atoms on split positions. Displacement ellipsoids are drawn at the 82% probability level for all non-H atoms.
in part only tentative because the H -atom positions are not fully known. The IO and IOH groups can be distinguished by the different $\mathrm{I}-\mathrm{O}$ bond lengths 1.799 (4) $\AA(\mathrm{O} 3), 1.844$ (4) and 1.850 (4) $\AA(\mathrm{O} 4$ and O5), and $1.899(4)-1.915(5) \AA(06-O 8)$ (see Table 2). In contrast to $\mathrm{LiH}_{4} \mathrm{IO}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, the only other tetrahydrogenorthoperiodate with a known crystal structure (Kraft \& Jansen, 1994), the oxo ligands display a cis configuration. Two of the H atoms are disordered over $\mathrm{O}-\mathrm{H} \leftrightarrow \mathrm{H}-\mathrm{O}$ split positions $(\mathrm{O} 4, \mathrm{O} 5)$ with symmetric double minimum potentials, as also established for $\mathrm{BaH}_{3} \mathrm{IO}_{6}$ (Sasaki, Yarita \& Sato, 1995).

Experimental

Single crystals of $\mathrm{Be}\left(\mathrm{H}_{4} \mathrm{IO}_{6}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ were grown by dissolving BeO in periodic acid and evaporating the aqueous solution obtained as described previously (Biber, Neiman \& Bragina, 1941; Maneva, Georgiev \& Pavlova, 1988).

Crystal data

$\mathrm{Be}\left(\mathrm{H}_{4} \mathrm{IO}_{6}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=534.94$
Tetragonal
I4 $/$ acd
$a=10.8997$ (7) \AA
$c=42.817$ (4) \AA
$V=5086.8(7) \AA^{3}$
$Z=16$
$D_{x}=2.794 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=2.75 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by pycnometry
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 61 reflections
$\theta=4.11-39.90^{\circ}$
$\mu=5.031 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$
Colourless

Data collection
Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans [width (0.9 $\left.+0.35 \tan \theta)^{\circ}\right]$
Absorption correction: ψ scans (Gabe, Le Page, Charland, Lee \& White, 1989)
$T_{\text {min }}=0.38, T_{\text {max }}=$
0.60

778 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0286$
$w R\left(F^{2}\right)=0.0870$
$S=1.344$
778 reflections
115 parameters
Only H -atom coordinates refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0416 P)^{2}\right.$ $+35.7863 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.001$

778 independent reflections
708 observed reflections
$[I>2 \sigma(I)]$
$\theta_{\text {max }}=21.93^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 8$
$l=0 \rightarrow 44$
3 standard reflections monitored every 160 reflections intensity decay: none
$\Delta \rho_{\text {max }}=0.649 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.892 \mathrm{e}^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.00007 (3)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(A^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Be	3/4	0.2344 (13)	0	0.026 (4)
1	0.48630 (5)	-0.00410 (3)	0.078806 (11)	0.0144 (3)
O1W	0.7523 (5)	0.3161 (6)	0.03115 (12)	0.0320 (14)
O 2 W	0.6253 (5)	0.1548 (5)	0.00081 (11)	0.0306 (14)
O3	0.4194 (4)	0.0176 (4)	0.04080 (9)	0.0208 (11)
O4	0.5605 (4)	-0.1519 (4)	0.06973 (10)	0.0221 (11)
O5	0.3457 (4)	-0.0746 (4)	0.09501 (9)	0.0206 (11)
O6	0.6263 (4)	0.0805 (4)	0.06349 (10)	0.0238 (12)
07	0.4277 (5)	0.1518 (4)	0.09268 (13)	0.0276 (13)
08	0.5634 (5)	$-0.0132(5)$	0.11893 (13)	0.0277 (13)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$
IO_{6} octahedron

, 3			
O3	1.799 (4)	1-06	1.899 (4)
I-O4	1.844 (4)	1-07	1.910 (5)
$\mathrm{I}-\mathrm{O} 5$	1.850 (4)	1-08	1.915 (5)
O3-I-O4	95.9 (2)	O5-I-07	88.6 (2)
$\mathrm{O} 3-\mathrm{l}-\mathrm{O} 5$	93.3 (2)	O6-I-07	86.8 (2)
O4-I-05	94.6 (2)	O3-I-O8	175.0)(2)
O3-I-06	87.1 (2)	O4-I-O8	87.2 (2)
O4-I-06	89.9 (2)	O5-I-O8	$9(.3$ (2)
O5-I-O6	175.4 (2)	O6-I-O8	89.0 (2)
O3-I-07	91.6 (2)	O7-I-08	85.1 (2)
O4-I-07	171.7 (2)		
BeO_{4} tetrahedron			
$\mathrm{Be}-\mathrm{OI} W$	1.604 (9)	$\mathrm{Be}-\mathrm{O} 2 \mathrm{~W}$	1.613 (10)
$\mathrm{Be}-\mathrm{OI} W^{\text {i'I }}$	I. 604 (9)	$\mathrm{Be}-\mathrm{O} 2 W^{\text {¹/ }}$	1.613 (10)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Be}-\mathrm{O} 1 W^{\text {iii }}$	112.5 (10)	$\mathrm{O} 1 W-\mathrm{Be}-\mathrm{O} 2 W$	107.1 (3)
$\mathrm{O} 1 W-\mathrm{Be}-\mathrm{O} 2 W^{\text {ini }}$	107.6 (2)	$\mathrm{O} 1 W^{\text {iii }}-\mathrm{Be}-\mathrm{O} 2 W^{\text {i }}$	107.7 (2)
$\mathrm{O} 1 W^{\text {iii }}-\mathrm{Be}-\mathrm{O} 2 W^{\text {iii }}$	107.1 (3)	$\mathrm{O} 2 W^{\text {iii }}-\mathrm{Be}-\mathrm{O} 2 W$	115.0 (9)
Possible hydrogen bonds [$d(\mathrm{O} \cdots \mathrm{O})<3.3 \AA$]			
O1w. . O3 ${ }^{\text {i }}$	2.638 (7)	O5. ${ }^{\text {O }}{ }^{1 \times}$	3.157 (7)
OIW...O6	3.226 (8)	O6. . O5 $^{\text {x }}$	2.747 (6)
O1W... $\mathrm{O}^{\text {vi }}$	2.648 (6)	O6. . ${ }^{\text {O7 }}$	3.229 (7)
O2W...O3 ${ }^{\text {iv }}$	2.636 (6)	07...O7 ${ }^{1}$	2.659 (9)
O2W. . 06	2.804 (6)	07. . $088^{\text {xi }}$	2.679 (8)
O2W. . O3	3.194 (7)	O8...08 ${ }^{\text {vii }}$	2.722 (9)
O4. . $04{ }^{\text { }}$	2.513 (9)	$08 \cdots 04^{\text {¹1 }}$	3.276 (7)
O5.. $\mathrm{OS}^{\text {ix }}$	2.588 (8)		

Symmetry codes: (i) $1-x, \frac{1}{2}-y, z$; (ii) $\frac{3}{2}-x, y-\frac{1}{2}, z ;$ (iii) $\frac{3}{2}-x, y,-z ;$ (iv) $1-x,-y,-z$; (v) $1-x,-\frac{1}{2}-y, z$; (vi) $\frac{3}{2}-x, \frac{1}{2}+y, z ;$ (vii) $\frac{3}{4}+$ $y, x-\frac{3}{4}, \frac{1}{4}-z$; (viii) $\frac{3}{4}-y, x-\frac{1}{4}, \frac{1}{4}-z$; (ix) $\frac{1}{4}-y, \frac{1}{4}-x, \frac{1}{4}-z ;$ (x) $x+\frac{1}{2},-y, z$; (xi) $x-\frac{1}{2},-y, z$; (xii) $\frac{1}{4}+y, \frac{3}{4}-x, \frac{1}{4}-z$.

Polycrystalline samples of the compound were characterized by X-ray analysis using the Guinier technique with $\mathrm{Cu} K \alpha$ radiation and quartz as internal standard. The unit-cell dimensions were calculated by least-squares methods (LSUCR: Least Squares Unit Cell Refinement, Programmbibliothek für die Chemie, HRZ Köln, Germany). The crystal studied was mounted in a sealed glass capillary. The space group was inferred from precession photographs of $h k 0, h k 1, h k 2,0 k l$, 1 kl and 2 kl layers taken using a Buerger precession camera (Firma Huber, Rimsting) and powder data. The data were corrected for Lorentz and polarization effects. Empirical absorption corrections were applied via ψ scans of nine reflections in the range $3.86<\theta<24.72^{\circ}$. The standard reflections were $10,0,0,0,10,0$, and $0,0,40$. The positions of the H atoms were deduced from difference Fourier maps. H atoms were refined with a common isotropic displacement parameter ($U_{\text {iso }}=$ $0.05 \AA^{2}$).

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: LSUCR. Data reduction: NRCVAX (Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to
solve structure: $N R C V A X$. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976) and SCHAKAL92 (Keller, 1992).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: DUI154). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Biber, V. A., Neiman, I. A. \& Bragina, A. A. (1941). Zh. Obshch. Khim. 11, 861-868.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Johnson. C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Keller, E. (1992). SCHAKAL92. Program for the Graphic Representation of Molecular and Crystallographic Models. University of Freiburg, Germany.
Kraft. Th. \& Jansen, M. (1994). Z. Anorg. Allg. Chem. 620, 805-808.
Maneva, M., Georgiev, M., Lange. N. \& Lutz. H. D. (1991). Z. Naturforsch. Teil B, 46, 795-799.
Maneva, M., Georgiev, M. \& Pavlova, A. (1988). J. Therm. Anal. 33, 589-595.
Sasaki, M., Yarita, T. \& Sato, S. (1995). Acta Cryst. C51, 1968-1970.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2662-2664

$\mathrm{K}_{2} \mathrm{Be}_{2} \mathrm{Si}_{3} \mathrm{O}_{9}$, a Potassium Beryllium Silicate Framework Built from Edge-Sharing Be-O Tetrahedra and Three-Ring Silicate Tetrahedra

Xianhui Bu, Thurman E. Gier and Galen D. Stucky

Chemistry Department, University of California, Santa Barbara, CA 93106, USA. E-mail: xianhui@sbxray.ucsb.edu
(Received 22 April 1996; accepted 4 June 1996)

Abstract

Dipotassium diberyllium trisilicon nonaoxide, $\mathrm{K}_{2} \mathrm{Be}_{2}-$ $\mathrm{Si}_{3} \mathrm{O}_{9}$, was synthesized at high temperature and high pressure and has a three-dimensional framework structure containing six-ring channels along the b axis. The framework is built from cyclic trimers of silicate tetrahedra and edge-sharing $\mathrm{Be}-\mathrm{O}$ tetrahedra.

Comment

Zeolite structures based on two types of tetrahedral atoms which have a combined formal charge of +7 or

